CS 4530: Fundamentals of Software Engineering
Module 3, Lesson 4
Concurrency Patterns in Typescript

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

e At the end of this lesson, you should be prepared
to:
e Explain the difference between JS run-to-completion
semantics and interrupt-based semantics.

* Given a simple program using async/await, work out the
order in which the statements in the program will run.

* Write simple programs that create and manage
promises using async/await

* Write simple programs to mask latency with
concurrency by using non-blocking 10 and Promise.all in

TypeScript.

A promise can be in one of exactly 3 states

* A JavaScript promise can be in one of three
states: pending, fulfilled, or rejected.

« Pending is the initial state where the promise is
waiting for an operation to complete;
« Resolved: either fulfilled or rejected.
- fulfilled means the operation was successful,
 rejected indicates that the operation failed.

Subcategories of Pending Promises

* Waiting: pending, and some of the operations it was
waiting for have not yet completed

* Ready for Execution: pending, but all the operations it
was waiting for have completed

- Executing: pending (not resolved), but the code of
the promise is currently being executed

« There can be at most one executing promise at any
time

A snapshot of the promise pool

p50

p51

p102

p27

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting.

The white promise is the
currently executing promise

The arrows indicate that one promise is waiting for
another

6

When the currently executing promise
succeeds, the pool will look like this:

pl00 p50 p25
A A A
| | I

p101 p51 P26
A A
I |

pl02 p27

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting

The white promise is the
currently executing promise

The currently executing promise may have created
some new promises, not shown here. Some of
them might be ready, too.

The arrows indicate that one promise is waiting for
another

Any ready promise can be chosen as the
next promise to be executed

p50

p51

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting

The white promise is the
currently executing promise

The arrows indicate that one promise is waiting for
another

Computations always run until they are
completed.

e Execution of a promise cannot be interrupted. That's
what we mean by "run to completion".

* Along the way, it may create promises that can be run
anytime after the current computation is completed
(i.e. they will be in the "waiting" state).

* We'll see that async/await provides an easy way to do that.

* A computation is completed when it returns from a
procedure, but there are no procedures for it to return
to (i.e. it returns to the "top level")

 When the current computation is completed, the
operating system (e.g. node.js) chooses some "ready"
promise to become the next current computation.

Programming with promises

Typescript has primitives that create
promises.

« But you will never do this
Some typescript libraries have API
procedures that return promises

 this is the usual way you'll get

promises.

Most of the time, you'll be building new
promises out of the ones that are given
to you.

This is what async/await does...

10

Use async functions to create promises

» Typically, an async function gets a promise (from
somewhere) and returns another promise.

11

Example:

/** given a string, returns a promise that prints a string
* and then resolves.
>I<>I</

import promiseToPrint from "./promiseToPrint";

export async function examplel(n: number): Promise<void> {
console.log(examplel(${n}) starting);
const pl = promiseToPrint(examplel(${n}) is printing);
await pl;
console.log(examplel(${n}) finishing);

[src/async-await/examplel.ts

12

export async function examplel(n: number): Promise<void> {

T el I‘r] onsole.log(" le1(${n}) starting);
async/awa It . frO Eonst pl = pr‘ir)n(?rQZTiPr'int(‘pi ig ;?‘?nting‘);
. . it pl;
the InSIde OUt i‘giiolz.log(‘examp1e1(${n}) finishing);

}

. This function executes normally until it hits the await, printing

out "examplel(1) starting" and binding p1 to the value of
promiseToPrint('pl is printing')

. When it hits the await, it takes all the code following the await
and creates a new promise that can only be executed after p1 is
completed.

. The new promise becomes the value of example(n).
. The caller of example(n) then continues its execution.

. If example(n) has no caller, then the runtime system chooses
some ready promise to execute.

13

The promise pool before before calling
examplel()

A
I

' t t

const res =
examplel(10);
//..more code..

A
|

14

The promise pool after calling examplel()

A
I
{ ' t t
const res = 0//\
//..more code.. console.log(
} “examplel(10) finishing’
)s A
) |
|
examplel(10) starting Important:
pl is printing The console.log can't run until
after the 'more code' finishes

Async functions: from the outside in

 What can async functions do?
 What are the typical patterns for applying them?

16

Async functions return promises

export async function examplel(n: number) { :
console.log(" examplel(${n}) starting’); S npx ts-node AsyncReturnsPromise.ts

const pl = promiseToPrint('pl is printing’); |starting main

await pl; _
console.log(examplel(${n}) finishing); examplel1(10) starting
} plis printing
function mainl() { example1(10) returned Promise { <pending> }
console.log('starting main'); o
const res = examplel(10) main finished

console.log ('examplel(10) returned', res)
console.log('main finished');

¥

example1(10) finishing

mainl();

[src/async-await/AsyncReturnsPromise.ts J

17

Asyncs can be nested

src/async-await/nestedAsyncs.ts J

export async function example2(n: number):
Promise<void> {

}

console.log(example2(${n}) starting);
const pl = examplel(n);

await pil;

console.log(example2(${n}) finishing);

function main() {

}

console.log('starting main');
example2(10)
console.log('main finished');

main();

$ npx ts-node nestedAsyncs.ts
starting main

example2(10) starting
examplel(10) starting

pl is printing

main finished

examplel(10) finishing
example2(10) finishing

18

Running Multiple Promises Asynchronously

export async function examplel(n: number) {
console.log(examplel(${n}) starting’);
const pl = promiseToPrint(pl is printing’);
await pl;
console.log(examplel(${n}) finishing);

}

function make3AsynchronousPromises() {

console.log('starting make3AsynchronousPromises');

examplel(100);
examplel(200);
examplel(300);

console.log('make3AsynchronousPromises finished');

}

make3AsynchronousPromises ()

$ npx ts-node ThreeAsynchronousPromises.ts
starting make3AsynchronousPromises
examplel(100) starting

pl is printing

examplel1(200) starting

pl is printing

examplel(300) starting

pl is printing
make3AsynchronousPromises finished
examplel(100) finishing
examplel(200) finishing
examplel(300) finishing

[src/async-await/ThreeAsynchronousPromises.ts J

19

Running Multiple Promises Sequentially

export async function examplel(n: number): { $ npx ts-node ThreeSequentialPromises.ts
console.log(" examplel(${n}) starting’); starting make3SequentialPromises
const pl = promiseToPrint(pl is printing’); examplel(100) starting
igzizlzliog(‘example1(${n}) finishing); pl is printing
} ' ’ examplel(100) finishing
examplel(200) starting
async function make3SequentialPromises() { pl i1s printing
console.log('starting make3SequentialPromises'); |examplel(200) finishing
await examplel(160); examplel(300) starting
await examplel(200); pl is printing
await examplel(300); ... |example1(300) finishing
console.log('make3SequentialPromises finished'); . . -
} make3SequentialPromises finished

make3SequentialPromises()

[src/async-await/ThreeSequentialPromises.ts J

20

export async function examplel(n: number) {

}

async function promisesPassingValues() {

[src/async-await/PromisesPassingValues.ts

Promises can pass values to one another

console.log(examplel(${n}) starting);
const pl = promiseToPrint(pl is printing);
await pil;

console.log(examplel(${n}) finishing);

// pass this to any waiting promises

// this is NOT the value of the async functior
return n+10;

console.log('starting promisesPassingValues'
const resl = await examplel(100);

const res2 = await examplel(resl);

$ npx ts-node PromisesPassingvalues.ts
starting promisesPassingvalues
examplel(100) starting

pl is printing

examp1lel(100) finishing
examplel(110) starting

pl is printing

examplel(110) finishing
examplel(120) starting

pl is printing

examplel(120) finishing

res3 = 130
promisesPassingvalues finished

const res3 = await examplel(res2);
console.log(res3 = ${res3});

console.log('promisesPassingValues finished');

21

Recover from failure with try/catch

// promise to fail if shouldFail is true| § npx ts-node recoveringFromPromiseFailure.ts
import { promiseMaybeFail } from °./promy starting script with shouldFail = false
promise succeeded

async function script(shouldFail:boolean) scr‘ipt Finished successfu'l'ly

console.log('starting script with shg

try {

await promiseMaybeFail(shouldFail

console.log('promise succeeded')jStarting script with shouldFail = true
} promise failed, but error caught

catch (e) { console.log('promise fail script finished successfully

console.log('script finished successturzy—7;

}

async function mainl() {
await script(false);
console.log('\n")

it ipt(t
y oo P (true) (src/async-await/recoveringFromPromiseFailure.ts J

mainl()

22

Answer: JS/TS has some primitives for
starting a non-blocking computation

* These are things like http requests, I/O operations, or timers.

* Each of these returns a promise that you can await. The
promise runs while it is pending, and produces the response
from the http request, or the contents of the file, etc.

* You will hardly ever call one of these primitives yourself;
usually they are wrapped in a convenient procedure, e.g., we
write

axios.get('https://rest- Web APIs
example.covey.town’) e ——
to make an http request, or

fs.readFile(filename)

to read the contents of a file. TR [

localStorage

HTMLDivElement

25

Pattern for starting a concurrent
computation using non-blocking I/0

export async function makeRequest(requestNumber:number) {
console.log(starting makeRequest(${requestNumber}));
const response = await axios.get('https://rest-example.covey.town');
console.log('request:', requestNumber, '\nresponse:', response.data);

1. The first console.log is printed
2. The http request is sent, using non-blocking i/o

3. A promise is created to run the second console.log after the axios.get
returns

4. The makeRequest() returns to its caller.

26

[src/async-await/makeThreeConcurrentRequests.ts J

Running 3 concurrent requests

import axios from 'axios';

$ npx ts-node makeThreeConcurrentRequests.ts
export async function makeRequest(starting make3ConcurrentRequests

console.log(starting makeRequ gtgprti ng makeRequest(100)

const response = await axios.g starting makeRequest(200)

console.log(request:${request starting makeRequest(300)
make3ConcurrentRequests finished
request 300 returned

function make3ConcurrentRequestd request 100 returned
console.log('starting make3Cor| request 200 returned

makeRequest(100);
makeRequest(200);
makeRequest(300);
console.log('make3ConcurrentRequests finished');

}

make3ConcurrentRequests()

27

Promise.all takes a list of promises, runs them
concurrently, and succeeds only when they have

all succeeded.

export async function makeRequest(requestNumber:number) {

console.log(starting makeRequest(${reg

uestNumber?}));

await axios.get('https://rest-example.c
console.log(request ${requestNumber}
return requestNumber

}

async function manyConcurrentRequests(reque
console.log('starting manyConcurrentRed
const responses = await Promise.all(reg
console.log('responses:', responses);
console.log('manyConcurrentRequests fir

}

async function main() {

manyConcurrentRequests([100,200,300,400]

$ npx ts-node manyConurrentRequests.ts
starting manyConcurrentRequests
starting makeRequest(100)
starting makeRequest(200)
starting makeRequest(300)
starting makeRequest(400)

request 100 returned

request 300 returned

request 200 returned

request 400 returned

responses: [100, 200, 300, 400]
manyConcurrentRequests finished

}

main()

[src/async-await/manyConcurrentRequests.ts J

28

If you add awaits, the requests will be
processed sequentially

async function make3SequentialRequests() {
console.log('starting make3SequentialRequests');
await makeRequest(1600);
await makeRequest(200);
await makeRequest(300);
console.log('make3SequentialRequests finished');

$ npx ts-node
makeThreeSequentialRequests.ts
starting make3SequentialRequests
starting makeRequest(100)
request 100 returned

starting makeRequest(200)
request 200 returned

starting makeRequest(300)
request 300 returned
make3SequentialRequests finished

29

...but it would be much slower

$ npx ts-node timeComparison.ts
After 100 runs of Tlength 10

makeRequestsConcurrently: min
makeRequestsSerially > min

23 avg = 34 max = 190 milliseconds
210 avg = 237 max = 812 milliseconds

30

Why is that?
Visualizing Promise.all

“Don’t make another request

Sequential (await) until you got the last response 237 msec
back”
send wait receive send wait receive send wait receive
“Make all of the requests now,
Concurrent (Promise.all) then wait for all of the 34 msec
responses”
send wait receive
send wait receive
send wait receive

31

Let’s put it all together

* JS/TS has single event loop

* We outsource most of the non-
blocking |0 work (to WebAPIs)
for asynchronous work

* Upon completion, they are
placed in queues (Microtask
gueue has priority over
Macrotask queue)

e Event loop picks them up from
gueue when call stack is

empty!

CALL STACK WEB AP

MICROTASK QUEUE

MACROTASK QUEUE

32

Quick demo

const foo = () => console.log("First™);
const bar = () => setTimeout(() => console.log("Second™), 500);
() => console.log("Third");

const baz

WEB APl
CALL STACK

bar();
foo();

baz();

T

EVENT LOOP

QUEUE

A
Sy

CUTPUT

Courtesy of https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

Testing your understanding

const arr = [1, 2, 3];
for (const x of arr) {
console.log(*as${x});
}
for (const x of arr) {
await fetch('https://google.com’); //1
console.log('b${x});
}
await Promise.all(/]2
arr.map(async x => {
await fetch('https://google.com’); //3
console.log(c${x});

1,
);

arr.map(x => { console.log(*d${x}); });

34

Pattern for testing an async function

import axios from 'axios'

async function echo(str: string) : Promise<string> {

const res =
await axios.get(https://httpbin.org/get?answer=${str})

return res.data.args.answer

}

test('request should return its argument’', async () => {

expect.assertions(1)
await expect(echo("33")).resolves.toEqual("33")

1)

{ src/jest/jest-example.test.ts J

35

General Rules for Writing Asynchronous
Code

* You can’t return a value from a promise to an ordinary procedure.
* You can only send the value to another promise that is awaiting it.

 Call async procedures only from other async functions or from the
top level.

* Break up any long-running computation into async/await segments
so other processes will have a chance to run.

* Leverage concurrency when possible
* Use promise.all if you need to wait for multiple promises to return.

* Check for errors with try/catch

An Example Task Using the Transcript Server

* Given an array of Student|Ds:
* Request each student’s transcript, and save it to disk so that we have a copy,
and calculate its size
®* Once all of the pages are downloaded and saved, print out the total size of all
of the files that were saved

Generating a promise for each student

async function asyncGetStudentData(studentID: number) {
const returnValue =
await axios.get(https://rest-example.covey.town/transcripts/${studentID})
return returnValue

}

async function asyncProcessStudent(studentID: number) : Promise<number> {
// wait to get the student data
const response = await ncGetStudentData(studentID)

// asynchronously write the file
await fsPromises.writeFile(
dataFileName(studentID),

Calling await also gives other
processes a chance to rum.

JSON.stringify(response.data))
// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size : number = stats.size
return size

38

[src/transcripts/simple.ts]

Running the student processes concurrently

async function runClientAsync(studentIDs:number[]) {
console.log(Generating Promises for ${studentIDs});
const studentPromises = <
studentIDs.map(studentID => asyncProcessStudent(studentID)) ;
console.log('Promises Created!');
console.log('Satisfying Promises Concurrently')

ConsStISiZesl- await Promise.all(studentPromises);

console.log(sizes)
~ const totalSize = sum(sizes)
~ console.log(Finished calculating size: ${totalSize}");
~ console.log('Done’);
}
Map-promises patterw: take a list of

elements and geverate a list of
prowises, one per elemewnt

[src/transcripts/simple.ts J

Output

runClientAsync([411,412,423])

N

S npx ts-node simple.ts

Generating Promises for 411,412,423
Promises Created!

Satisfying Promises Concurrently

[151, 92, 145]

Finished calculating size: 388

Done

40

But what if there’s an error?

runClientAsync([411,412,87065,423,23044])

g

$ npx ts-node transcripts/simple.ts

Generating Promises for 411,412,87065,423,23044
Promises Created!

Satisfying Promises Concurrently

<b1lah blah
blah>\node_modules\axios\1ib\core\createError.js
116
var error = new Error(message);
A

Error: Request failed with status code 404

Oops!

41

Need to catch the error

type StudentData = {isOK: boolean, id: number, payload?: any }

/** asynchronously retrieves student data, */
async function asyncGetStudentData(studentID: number): Promise<StudentData> {

try {
const returnValue =

await axios.get(https://rest-example.covey.town/transcripts/${studentID})
return { isOK: true, id: studentID, payload: returnValue }
} catch (e) {

return { isOK: false, id: studentID }
} Catch the error and transwmit it in a
} form the rest of the caller can
hawdle.

[src/transcripts/handle-errors.ts]

42

And recover from the error...

async function asyncProcessStudent(studentID: number): Promise<number> {
// wait to get the student data

const response = await asyncGetStudentData(studentID)
if (!(response.isOK)) {

console.error(bad student ID ${studentID}) |Design decision: if we have a bad

return © student ITD, we'll privt out aw error

} else { message, and comnt that as 0
await fsPromises.writeFile(towards the +otal.
dataFileName(studentID),

JSON.stringify(response.payload.data))
// last, extract its size

const stats = await fsPromises.stat(dataFileName(studentID))
const size: number = stats.size
return size

}

{ src/transcripts/handle-errors.ts J

43

New output

runClientAsync([411,32789,412,423,10202040])

e

$ npx ts-node transcripts/handle-errors.ts
Generating Promises for
411,32789,412,423,10202040

Promises Created!

wait for all promises to be satisfied

bad student ID 32789

bad student ID 10202040

[151, O, 92, 145, 0]

Finished calculating size: 388

Done

44

Odds and Ends You Should Know About

[src/data-races/dataRace.ts

This is not Java!

let x : number = 10
* InJava, you could get an
async function asyncDouble() { interrupt between statement 2
// start an asynchronous computation and wait for the result and statement 3.

await makeOneGetRequest(1); :
Xx = X * 2 // statement 1 * In TS/IS statement 3 is

} guaranteed to be executed
immediately after statement
2!
async function asyncIncrementTwice() {)))
// start an asynchronous computation and wait for the result * Nointerrupt is possible.
await makeOneGetRequest(2);
X =X + 1; // statement 2
// nothing can happen between these two statements!!
X = X + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

[src/data-races/dataRace.ts J

But you can still have a data race

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1l);
X =X * 2 // statement 1

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
X =X + 1; // statement 2
X =x+1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

47

Async/await code is compiled into
promise/then code

async function console.log('Making first request');
makeThreeSerialRequests () { makeOneGetRequest () .then (() =>{

1. console.log('Making first console.log('Making second request');
request’) ; return makeOneGetRequest () ;

2. await makeOneGetRequest () ; }) .then (() => {

3. console.log('Making second N. console.log('Making third request');
request’); :> return makeOneGetRequest () ;

4. await makeOneGetRequest () ; 1) .then (()=>{

5. console.log('Making third console.log('All done!');

request’) ; b) g

6. await makeOneGetRequest () ;

7. console.log('All done!');

}

makeThreeSerialRequests () ;

Promises Enforce Ordering Through "Then”

1. console.log('Making requests');
2. axios.get('https://rest-example.covey.town/"')
.then ((response) =>{
console.log('Heard back from server');
console.log(response.data) ;
}) g
3. axios.get('https://www.google.com/"')
.then((response) =>{
console.log('Heard back from Google') ;
}) g
4. axios.get('https://www.facebook.com/"')
.then ((response) =>{
console.log('Heard back from Facebook') ;

b) g
5. console.log('Requests sent!');

axios.get returns a promise.

p.then mutates that promise so
that the then block is run
immediately after the original
promise returns.

The resulting promise isn’t
completed until the then block
finishes.

You can chain .then’s, to get
things that look like
p.then().then().then()

The Self-Ticking Clock

* To make the clock self-ticking, add the following
line to your clock:

constructor () {
setInterval(() => {this.tick()},50)

¥

50

Async/Await Programming Activity

Download the activity (includes instructions in README.md):
Linked from course webpage for Module 6

Review

* You should now be prepared to:

e Explain the difference between JS run-to-completion
semantics and interrupt-based semantics.

* Given a simple program using async/await, work out the
order in which the statements in the program will run.

* Write simple programs that create and manage promises
using async/await

* Write simple programs to mask latency with concurrency by
using non-blocking IO and Promise.all in TypeScript.

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 3, Lesson 4 Concurrency Patterns in Typescript
	Slide 2: Learning Goals for this Lesson
	Slide 4: A promise can be in one of exactly 3 states
	Slide 5: Subcategories of Pending Promises
	Slide 6: A snapshot of the promise pool
	Slide 7: When the currently executing promise succeeds, the pool will look like this:
	Slide 8: Any ready promise can be chosen as the next promise to be executed
	Slide 9: Computations always run until they are completed.
	Slide 10: Programming with promises
	Slide 11: Use async functions to create promises
	Slide 12: Example:
	Slide 13: async/await: from the inside out
	Slide 14: The promise pool before before calling example1()
	Slide 15: The promise pool after calling example1()
	Slide 16: Async functions: from the outside in
	Slide 17: Async functions return promises
	Slide 18: Asyncs can be nested
	Slide 19: Running Multiple Promises Asynchronously
	Slide 20: Running Multiple Promises Sequentially
	Slide 21: Promises can pass values to one another
	Slide 22: Recover from failure with try/catch
	Slide 25: Answer: JS/TS has some primitives for starting a non-blocking computation
	Slide 26: Pattern for starting a concurrent computation using non-blocking I/O
	Slide 27: Running 3 concurrent requests
	Slide 28: Promise.all takes a list of promises, runs them concurrently, and succeeds only when they have all succeeded.
	Slide 29: If you add awaits, the requests will be processed sequentially
	Slide 30: …but it would be much slower
	Slide 31: Why is that? Visualizing Promise.all
	Slide 32: Let’s put it all together
	Slide 33: Quick demo
	Slide 34: Testing your understanding
	Slide 35: Pattern for testing an async function
	Slide 36: General Rules for Writing Asynchronous Code
	Slide 37: An Example Task Using the Transcript Server
	Slide 38: Generating a promise for each student
	Slide 39: Running the student processes concurrently
	Slide 40: Output
	Slide 41: But what if there’s an error?
	Slide 42: Need to catch the error
	Slide 43: And recover from the error…
	Slide 44: New output
	Slide 45: Odds and Ends You Should Know About
	Slide 46: This is not Java!
	Slide 47: But you can still have a data race
	Slide 48: Async/await code is compiled into promise/then code
	Slide 49: Promises Enforce Ordering Through “Then”
	Slide 50: The Self-Ticking Clock
	Slide 51: Async/Await Programming Activity
	Slide 52: Review

